Combining Clustering techniques and FCA to characterize Interestingness Measures

نویسندگان

  • Dhouha Grissa
  • Sylvie Guillaume
  • Engelbert Mephu Nguifo
چکیده

Formal Concept Analysis "FCA" is a data analysis method which enables to discover hidden knowledge existing in data. A kind of hidden knowledge extracted from data is association rules. Di erent Interestingness Measures "IMs" were reported in the literature to extract only relevant association rules. Given a dataset, the choice of a good interestingness measure remains a challenging task for a user. Given an interestingness measures evaluation matrix according to semantic properties, this paper describes how FCA can highlight interestingness measures with similar behavior in order to help the user during his choice. The aim of this paper is the discovery of interestingness measures clusters, able to validate those found due to a method of agglomerative hierarchical clustering (AHC) using Ward criterion and a method of a non-hierarchical clustering of k-means. Then, based on the theoretical study of sixty one interestingness measures according to nineteen properties, proposed in a recent study, FCA describes several groups of measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Clustering techniques and Formal Concept Analysis to characterize Interestingness Measures

Formal Concept Analysis "FCA" is a data analysis method which enables to discover hidden knowledge existing in data. A kind of hidden knowledge extracted from data is association rules. Different quality measures were reported in the literature to extract only relevant association rules. Given a dataset, the choice of a good quality measure remains a challenging task for a user. Given a quality...

متن کامل

ارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها

Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...

متن کامل

Association Rule Pruning based on Interestingness Measures with Clustering

Association rule mining plays vital part in knowledge mining. The difficult task is discovering knowledge or useful rules from the large number of rules generated for reduced support. For pruning or grouping rules, several techniques are used such as rule structure cover methods, informative cover methods, rule clustering, etc. Another way of selecting association rules is based on interestingn...

متن کامل

Clustering the objective interestingness measures based on tendency of variation in statistical implications

In recent years, the research cluster of objective interestingness measures has rapidly developed in order to assist users to choose the appropriate measure for their application. Researchers in this field mainly focus on three main directions: clustering based on the properties of the measures, clustering based on the behavior of measures and clustering tendency of variation in statistical imp...

متن کامل

A Graph-based Clustering Approach to Evaluate Interestingness Measures: A Tool and a Comparative Study

Finding interestingness measures to evaluate association rules has become an important knowledge quality issue in KDD. Many interestingness measures may be found in the literature, and many authors have discussed and compared interestingness properties in order to improve the choice of the most suitable measures for a given application. As interestingness depends both on the data structure and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012